Pages

Tuesday 7 December, 2010

glycolysis

Glycolysis

Digestion of Dietary Carbohydrates

Dietary carbohydrate from which humans gain energy enter the body in complex forms, such as disaccharides and the polymers starch (amylose and amylopectin) and glycogen. The polymer cellulose is also consumed but not digested. The first step in the metabolism of digestible carbohydrate is the conversion of the higher polymers to simpler, soluble forms that can be transported across the intestinal wall and delivered to the tissues. The breakdown of polymeric sugars begins in the mouth. Saliva has a slightly acidic pH of 6.8 and contains lingual amylase that begins the digestion of carbohydrates. The action of lingual amylase is limited to the area of the mouth and the esophagus; it is virtually inactivated by the much stronger acid pH of the stomach. Once the food has arrived in the stomach, acid hydrolysis contributes to its degradation; specific gastric proteases and lipases aid this process for proteins and fats, respectively. The mixture of gastric secretions, saliva, and food, known collectively as chyme, moves to the small intestine.
The main polymeric-carbohydrate digesting enzyme of the small intestine is α-amylase. This enzyme is secreted by the pancreas and has the same activity as salivary amylase, producing disaccharides and trisaccharides. The latter are converted to monosaccharides by intestinal saccharidases, including maltases that hydrolyze di- and trisaccharides, and the more specific disaccharidases, sucrase, lactase, and trehalase. The net result is the almost complete conversion of digestible carbohydrate to its constituent monosaccharides. The resultant glucose and other simple carbohydrates are transported across the intestinal wall to the hepatic portal vein and then to liver parenchymal cells and other tissues. There they are converted to fatty acids, amino acids, and glycogen, or else oxidized by the various catabolic pathways of cells.
Oxidation of glucose is known as glycolysis.Glucose is oxidized to either lactate or pyruvate. Under aerobic conditions, the dominant product in most tissues is pyruvate and the pathway is known as aerobic glycolysis. When oxygen is depleted, as for instance during prolonged vigorous exercise, the dominant glycolytic product in many tissues is lactate and the process is known as anaerobic glycolysis.
back to the top

The Energy Derived from Glucose Oxidation

Aerobic glycolysis of glucose to pyruvate, requires two equivalents of ATP to activate the process, with the subsequent production of four equivalents of ATP and two equivalents of NADH. Thus, conversion of one mole of glucose to two moles of pyruvate is accompanied by the net production of two moles each of ATP and NADH.

Glucose + 2 ADP + 2 NAD+ + 2 Pi ——> 2 Pyruvate + 2 ATP + 2 NADH + 2 H+

The NADH generated during glycolysis is used to fuel mitochondrial ATP synthesis via oxidative phosphorylation, producing either two or three equivalents of ATP depending upon whether the glycerol phosphate shuttle or the malate-aspartate shuttle is used to transport the electrons from cytoplasmic NADH into the mitochondria.
The malate-aspartate shuttle
The malate-aspartate shuttle is the principal mechanism for the movement of reducing equivalents (in the form of NADH) from the cytoplasm to the mitochondria. The glycolytic pathway is a primary source of NADH. Within the mitochodria the electrons of NADH can be coupled to ATP production during the process of oxidative phosphorylation. The electrons are "carried" into the mitochondria in the form of malate. Cytoplasmic malate dehydrogenase (MDH) reduces oxaloacetate (OAA) to malate while oxidizing NADH to NAD+. Malate then enters the mitochondria where the reverse reaction is carried out by mitochondrial MDH. Movement of mitochondrial OAA to the cytoplasm to maintain this cycle requires it be transaminated to aspartate (Asp, D) with the amino group being donated by glutamate (Glu, E). The Asp then leaves the mitochondria and enters the cytoplasm. The deamination of glutamate generates α-ketoglutarate (α-KG) which leaves the mitochondria for the cytoplasm. All the participants in the cycle are present in the proper cellular compartment for the shuttle to function due to concentration dependent movement. When the energy level of the cell rises the rate of mitochondrial oxidation of NADH to NAD+ declines and therefore, the shuttle slows. G3PDH is glyceraldehyde-3-phosphate dehydrogenase.
The glycerol phosphate shuttle
The glycerol phosphate shuttle is a secondary mechanism for the transport of electrons from cytosolic NADH to mitochondrial carriers of the oxidative phosphorylation pathway. The primary cytoplasmic NADH electron shuttle is the malate-aspartate shuttle. Two enzymes are involved in this shuttle. One is the cytosolic version of the enzyme glycerol-3-phosphate dehydrogenase (glycerol-3-PDH) which has as one substrate, NADH. The second is is the mitochondrial form of the enzyme which has as one of its' substrates, FAD+. The net result is that there is a continual conversion of the glycolytic intermediate, DHAP and glycerol-3-phosphate with the concomitant transfer of the electrons from reduced cytosolic NADH to mitochondrial oxidized FAD+. Since the electrons from mitochondrial FADH2 feed into the oxidative phosphorylation pathway at coenzyme Q (as opposed to NADH-ubiquinone oxidoreductase [complex I]) only 2 moles of ATP will be generated from glycolysis. G3PDH is glyceraldehyde-3-phoshate dehydrogenase.
The net yield from the oxidation of 1 mole of glucose to 2 moles of pyruvate is, therefore, either 6 or 8 moles of ATP. Complete oxidation of the 2 moles of pyruvate, through the TCA cycle, yields an additional 30 moles of ATP; the total yield, therefore being either 36 or 38 moles of ATP from the complete oxidation of 1 mole of glucose to CO2and H2O.
back to the top

The Individual Reactions of Glycolysis

The pathway of glycolysis can be seen as consisting of 2 separate phases. The first is the chemical priming phase requiring energy in the form of ATP, and the second is considered the energy-yielding phase. In the first phase, 2 equivalents of ATP are used to convert glucose to fructose 1,6-bisphosphate (F1,6BP). In the second phase F1,6BP is degraded to pyruvate, with the production of 4 equivalents of ATP and 2 equivalents of NADH.

Reactions of glycolysis

Reactions of glycolysis
Pathway of glycolysis from glucose to pyruvate. Substrates and products are in blue, enzymes are in green. The two high energy intermediates whose oxidations are coupled to ATP synthesis are shown in red (1,3-bisphosphoglycerate and phosphoenolpyruvate). Place mouse over intermediate names to see chemical structures.


The Hexokinase Reaction:

The ATP-dependent phosphorylation of glucose to form glucose 6-phosphate (G6P)is the first reaction of glycolysis, and is catalyzed by tissue-specific isoenzymes known as hexokinases. The phosphorylation accomplishes two goals: First, the hexokinase reaction converts nonionic glucose into an anion that is trapped in the cell, since cells lack transport systems for phosphorylated sugars. Second, the otherwise biologically inert glucose becomes activated into a labile form capable of being further metabolized.
Four mammalian isozymes of hexokinase are known (Types I–IV), with the Type IV isozyme often referred to as glucokinase. Glucokinase is the form of the enzyme found in hepatocytes and pancreatic β-cells. The high Km of glucokinase for glucose means that this enzyme is saturated only at very high concentrations of substrate.
Saturation curves comparing hexokinase and glucokinase
Comparison of the activities of hexokinase and glucokinase. The Km for hexokinase is significantly lower (0.1mM) than that of glucokinase (10mM). This difference ensures that non-hepatic tissues (which contain hexokinase) rapidly and efficiently trap blood glucose within their cells by converting it to glucose-6-phosphate. One major function of the liver is to deliver glucose to the blood and this in ensured by having a glucose phosphorylating enzyme (glucokinase) whose Km for glucose is sufficiently higher that the normal circulating concentration of glucose (5mM).
This feature of hepatic glucokinase allows the liver to buffer blood glucose. After meals, when postprandial blood glucose levels are high, liver glucokinase is significantly active, which causes the liver preferentially to trap and to store circulating glucose. When blood glucose falls to very low levels, tissues such as liver and kidney, which contain glucokinases but are not highly dependent on glucose, do not continue to use the meager glucose supplies that remain available. At the same time, tissues such as the brain, which are critically dependent on glucose, continue to scavenge blood glucose using their low Km hexokinases, and as a consequence their viability is protected. Under various conditions of glucose deficiency, such as long periods between meals, the liver is stimulated to supply the blood with glucose through the pathway of gluconeogenesis. The levels of glucose produced during gluconeogenesis are insufficient to activate glucokinase, allowing the glucose to pass out of hepatocytes and into the blood.
The regulation of hexokinase and glucokinase activities is also different. Hexokinases I, II, and III are allosterically inhibited by product (G6P) accumulation, whereas glucokinases are not. The latter further insures liver accumulation of glucose stores during times of glucose excess, while favoring peripheral glucose utilization when glucose is required to supply energy to peripheral tissues.


Phosphohexose Isomerase:

The second reaction of glycolysis is an isomerization, in which G6P is converted to fructose 6-phosphate (F6P). The enzyme catalyzing this reaction is phosphohexose isomerase (also known as phosphoglucose isomerase). The reaction is freely reversible at normal cellular concentrations of the two hexose phosphates and thus catalyzes this interconversion during glycolytic carbon flow and during gluconeogenesis.


6-Phosphofructo-1-Kinase (Phosphofructokinase-1, PFK-1):

The next reaction of glycolysis involves the utilization of a second ATP to convert F6P to fructose 1,6-bisphosphate (F1,6BP). This reaction is catalyzed by 6-phosphofructo-1-kinase, better known as phosphofructokinase-1 or PFK-1. This reaction is not readily reversible because of its large positive free energy (ΔG0' = +5.4 kcal/mol) in the reverse direction. Nevertheless, fructose units readily flow in the reverse (gluconeogenic) direction because of the ubiquitous presence of the hydrolytic enzyme, fructose-1,6-bisphosphatase (F-1,6-BPase).
The presence of these two enzymes in the same cell compartment provides an example of a metabolic futile cycle, which if unregulated would rapidly deplete cell energy stores. However, the activity of these two enzymes is so highly regulated that PFK-1 is considered to be the rate-limiting enzyme of glycolysis and F-1,6-BPase is considered to be the rate-limiting enzyme in gluconeogenesis.


Aldolase:

Aldolase catalyses the hydrolysis of F1,6BP into two 3-carbon products: dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate (G3P). The aldolase reaction proceeds readily in the reverse direction, being utilized for both glycolysis and gluconeogenesis.


Triose Phosphate Isomerase:

The two products of the aldolase reaction equilibrate readily in a reaction catalyzed by triose phosphate isomerase. Succeeding reactions of glycolysis utilize G3P as a substrate; thus, the aldolase reaction is pulled in the glycolytic direction by mass action principals.


Glyceraldehyde-3-Phosphate Dehydrogenase:

The second phase of glucose catabolism features the energy-yielding glycolytic reactions that produce ATP and NADH. In the first of these reactions, glyceraldehyde-3-P dehydrogenase (G3PDH) catalyzes the NAD+-dependent oxidation of G3P to 1,3-bisphosphoglycerate (1,3BPG) and NADH. The G3PDH reaction is reversible, and the same enzyme catalyzes the reverse reaction during gluconeogenesis.


Phosphoglycerate Kinase:

The high-energy phosphate of 1,3-BPG is used to form ATP and 3-phosphoglycerate (3PG) by the enzyme phosphoglycerate kinase. Note that this is the only reaction of glycolysis or gluconeogenesis that involves ATP and yet is reversible under normal cell conditions. Associated with the phosphoglycerate kinase pathway is an important reaction of erythrocytes, the formation of 2,3-bisphosphoglycerate, 2,3BPG (see Figure below) by the enzyme bisphosphoglycerate mutase. 2,3BPG is an important regulator of hemoglobin's affinity for oxygen. Note that 2,3-bisphosphoglycerate phosphatase degrades 2,3BPG to 3-phosphoglycerate, a normal intermediate of glycolysis. The 2,3BPG shunt thus operates with the expenditure of 1 equivalent of ATP per triose passed through the shunt. The process is not reversible under physiological conditions.
Pathway for 2,3-bisphosphoglycerate synthesis in erythrocytes
The pathway for 2,3-bisphosphoglycerate (2,3-BPG) synthesis within erythrocytes. Synthesis of 2,3-BPG represents a major reaction pathway for the consumption of glucose in erythrocytes. The synthesis of 2,3-BPG in erythrocytes is critical for controlling hemoglobin affinity for oxygen. Note that when glucose is oxidized by this pathway the erythrocyte loses the ability to gain 2 moles of ATP from glycolytic oxidation of 1,3-BPG to 3-phosphoglycerate via the phosphoglycerate kinase reaction.


Phosphoglycerate Mutase and Enolase:

The remaining reactions of glycolysis are aimed at converting the relatively low energy phosphoacyl-ester of 3PG to a high-energy form and harvesting the phosphate as ATP. The 3PG is first converted to 2PG by phosphoglycerate mutase and the 2PG conversion to phosphoenoylpyruvate (PEP) is catalyzed by enolase.


Pyruvate Kinase:

The final reaction of aerobic glycolysis is catalyzed by the highly regulated enzyme pyruvate kinase (PK). In this strongly exergonic reaction, the high-energy phosphate of PEP is conserved as ATP. The loss of phosphate by PEP leads to the production of pyruvate in an unstable enol form, which spontaneously tautomerizes to the more stable, keto form of pyruvate. This reaction contributes a large proportion of the free energy of hydrolysis of PEP.
There are two distinct genes encoding PK activity. One is located on chromosome 1 and encodes the liver and erythrocyte PK proteins (identified as the PKLR gene) and the other is located on chromosome 15 and encodes the muscle PK proteins (identified as the PKM gene). The muscle PKM gene directs the synthesis of two isoforms of muscle PK termed PK-M1 and PK-M2. Deficiencies in the PKLR gene are the cause of the most common form ofinherited non-spherocytic anemia.
back to the top

Anaerobic Glycolysis

Under aerobic conditions, pyruvate in most cells is further metabolized via the TCA cycle. Under anaerobic conditions and in erythrocytes under aerobic conditions, pyruvate is converted to lactate by the enzyme lactate dehydrogenase (LDH), and the lactate is transported out of the cell into the circulation. The conversion of pyruvate to lactate, under anaerobic conditions, provides the cell with a mechanism for the oxidation of NADH (produced during the G3PDH reaction) to NAD+ which occurs during the LDH catalyzed reaction. This reduction is required since NAD+ is a necessary substrate for G3PDH, without which glycolysis will cease. Normally, during aerobic glycolysis the electrons of cytoplasmic NADH are transferred to mitochondrial carriers of the oxidative phosphorylation pathway generating a continuous pool of cytoplasmic NAD+.
Aerobic glycolysis generates substantially more ATP per mole of glucose oxidized than does anaerobic glycolysis. The utility of anaerobic glycolysis, to a muscle cell when it needs large amounts of energy, stems from the fact that the rate of ATP production from glycolysis is approximately 100X faster than from oxidative phosphorylation. During exertion muscle cells do not need to energize anabolic reaction pathways. The requirement is to generate the maximum amount of ATP, for muscle contraction, in the shortest time frame. This is why muscle cells derive almost all of the ATP consumed during exertion from anaerobic glycolysis.
back to the top

Regulation of Glycolysis

The reactions catalyzed by hexokinase, PFK-1 and PK all proceed with a relatively large free energy decrease. These non-equilibrium reactions of glycolysis would be ideal candidates for regulation of the flux through glycolysis. Indeed, in vitro studies have shown all three enzymes to be allosterically controlled.
Regulation of hexokinase, however, is not the major control point in glycolysis. This is due to the fact that large amounts of G6P are derived from the breakdown of glycogen (the predominant mechanism of carbohydrate entry into glycolysis in skeletal muscle) and, therefore, the hexokinase reaction is not necessary. Regulation of PK is important for reversing glycolysis when ATP is high in order to activate gluconeogenesis. As such this enzyme catalyzed reaction is not a major control point in glycolysis. The rate limiting step in glycolysis is the reaction catalyzed by PFK-1.
PFK-1 is a tetrameric enzyme that exist in two conformational states termed R and T that are in equilibrium. ATP is both a substrate and an allosteric inhibitor of PFK-1. Each subunit has two ATP binding sites, a substrate site and an inhibitor site. The substrate site binds ATP equally well when the tetramer is in either conformation. The inhibitor site binds ATP essentially only when the enzyme is in the T state. F6P is the other substrate for PFK-1 and it also binds preferentially to the R state enzyme. At high concentrations of ATP, the inhibitor site becomes occupied and shifting the equilibrium of PFK-1 conformation to that of the T state decreasing PFK-1's ability to bind F6P. The inhibition of PFK-1 by ATP is overcome by AMP which binds to the R state of the enzyme and, therefore, stabilizes the conformation of the enzyme capable of binding F6P. The most important allosteric regulator of both glycolysis and gluconeogenesis is fructose 2,6-bisphosphate, F2,6BP, which is not an intermediate in glycolysis or in gluconeogenesis.
Regulation of glycolysis and gluconeogenesis by fructose-2,6-bisphosphate
Regulation of glycolysis and gluconeogenesis by fructose 2,6-bisphosphate (F2,6BP). The major sites for regulation of glycolysis and gluconeogenesis are the phosphofructokinase-1 (PFK-1) and fructose-1,6-bisphosphatase (F-1,6-BPase) catalyzed reactions. PFK-2 is the kinase activity and F-2,6-BPase is the phosphatase activity of the bi-functional regulatory enzyme, phosphofructokinase-2/fructose-2,6-bisphosphatase. PKA is cAMP-dependent protein kinase which phosphorylates PFK-2/F-2,6-BPase turning on the phosphatase activity. (+ve) and (-ve) refer to positive and negative activities, respectively.
The synthesis of F2,6BP is catalyzed by the bifunctional enzyme phosphofructokinase-2/fructose-2,6-bisphosphatase (PFK-2/F-2,6-BPase). In the nonphosphorylated form the enzyme is known as PFK-2 and serves to catalyze the synthesis of F2,6BP by phosphorylating fructose 6-phosphate. The result is that the activity of PFK-1 is greatly stimulated and the activity of F-1,6-BPase is greatly inhibited.
Under conditions where PFK-2 is active, fructose flow through the PFK-1/F-1,6-BPase reactions takes place in the glycolytic direction, with a net production of F1,6BP. When the bifunctional enzyme is phosphorylated it no longer exhibits kinase activity, but a new active site hydrolyzes F2,6BP to F6P and inorganic phosphate. The metabolic result of the phosphorylation of the bifunctional enzyme is that allosteric stimulation of PFK-1 ceases, allosteric inhibition of F-1,6-BPase is eliminated, and net flow of fructose through these two enzymes is gluconeogenic, producing F6P and eventually glucose.
The interconversion of the bifunctional enzyme is catalyzed by cAMP-dependent protein kinase (PKA), which in turn is regulated by circulating peptide hormones. When blood glucose levels drop, pancreatic insulin production falls, glucagon secretion is stimulated, and circulating glucagon is highly increased. Hormones such as glucagon bind to plasma membrane receptors on liver cells, activating membrane-localized adenylate cyclase leading to an increase in the conversion of ATP to cAMP (see diagram below). cAMP binds to the regulatory subunits of PKA, leading to release and activation of the catalytic subunits. PKA phosphorylates numerous enzymes, including the bifunctional PFK-2/F-2,6-BPase. Under these conditions the liver stops consuming glucose and becomes metabolically gluconeogenic, producing glucose to reestablish normoglycemia.

No comments: