Blog of biotech 2k11 Gitam University "Lean on me, when you're not strong, and I'll be your friend, I'll help you carry on, for it won't be long, 'til I'm going to need somebody to lean on."
Tuesday, 7 December 2010
glycolysis
Digestion of Dietary Carbohydrates
The Energy Derived from Glucose Oxidation
Glucose + 2 ADP + 2 NAD+ + 2 Pi ——> 2 Pyruvate + 2 ATP + 2 NADH + 2 H+
The Individual Reactions of Glycolysis
The Hexokinase Reaction:
Phosphohexose Isomerase:
6-Phosphofructo-1-Kinase (Phosphofructokinase-1, PFK-1):
Aldolase:
Triose Phosphate Isomerase:
Glyceraldehyde-3-Phosphate Dehydrogenase:
Phosphoglycerate Kinase:
Phosphoglycerate Mutase and Enolase:
Pyruvate Kinase:
Anaerobic Glycolysis
Regulation of Glycolysis
Carbohydrate
Carbohydrates
Carbohydrates are the main energy source for the human body. Chemically, carbohydrates are organic molecules in which carbon, hydrogen, and oxygen bond together in the ratio: Cx(H2O)y, where x and y are whole numbers that differ depending on the specific carbohydrate to which we are referring. Animals (including humans) break down carbohydrates during the process ofmetabolism to release energy. For example, the chemical metabolism of thesugar glucose is shown below:
C6H12O6 + 6 O2 6 CO2 + 6 H2O + energy |
Animals obtain carbohydrates by eating foods that contain them, for example potatoes, rice, breads, and so on. These carbohydrates are manufactured by plants during the process of photosynthesis. Plants harvest energy from sunlight to run the reaction just described in reverse:
6 CO2 + 6 H2O + energy (from sunlight) C6H12O6 + 6 O2 |
A potato, for example, is primarily a chemical storage system containing glucose molecules manufactured during photosynthesis. In a potato, however, those glucose molecules are bound together in a long chain. As it turns out, there are two types of carbohydrates, the simple sugars and those carbohydrates that are made of long chains of sugars - the complex carbohydrates.
Simple sugars
All carbohydrates are made up of units of sugar (also called saccharide units). Carbohydrates that contain only one sugar unit (monosaccharides) or two sugar units (disaccharides) are referred to as simple sugars. Simple sugars are sweet in taste and are broken down quickly in the body to release energy. Two of the most common monosaccharides are glucose and fructose. Glucose is the primary form of sugar stored in the human body for energy. Fructose is the main sugar found in most fruits. Both glucose and fructose have the same chemical formula (C6H12O6); however, they have different structures, as shown (note: the carbon atoms that sit in the "corners" of the rings are not labeled):
Glucose | Fructose |
Disaccharides have two sugar units bonded together. For example, common table sugar is sucrose, a disaccharide that consists of a glucose unit bonded to a fructose unit:
Sucrose |
Complex carbohydrates
Complex carbohydrates are polymers of the simple sugars. In other words, the complex carbohydrates are long chains of simple sugar units bonded together (for this reason the complex carbohydrates are often referred to as polysaccharides). The potato we discussed earlier actually contains the complex carbohydrate starch. Starch is a polymer of the monosaccharide glucose:
Starch |
Starch is the principal polysaccharide used by plants to store glucose for later use as energy. Plants often store starch in seeds or other specialized organs; for example, common sources of starch include rice, beans, wheat, corn, potatoes, and so on. When humans eat starch, an enzyme that occurs in saliva and in the intestines called amylase breaks the bonds between the repeating glucose units, thus allowing the sugar to be absorbed into the bloodstream. Once absorbed into the bloodstream, the human body distributes glucose to the areas where it is needed for energy or stores it as its own special polymer - glycogen. Glycogen, another polymer of glucose, is the polysaccharide used by animals to store energy. Excess glucose is bonded together to form glycogen molecules, which the animal stores in the liver and muscle tissue as an "instant" source of energy. Both starch and glycogen are polymers of glucose; however, starch is a long, straight chain of glucose units, whereas glycogen is a branched chain of glucose units, as seen in the illustrations linked below:
The Starch Molecule • The Glycogen Molecule
Another important polysaccharide is cellulose. Cellulose is yet a thirdpolymer of the monosaccharide glucose. Cellulose differs from starch and glycogen because the glucose units form a two-dimensional structure, withhydrogen bonds holding together nearby polymers, thus giving the moleculeadded stability. Cellulose, also known as plant fiber, cannot be digested by human beings, therefore cellulose passes through the digestive tract without being absorbed into the body. Some animals, such as cows and termites, contain bacteria in their digestive tract that help them to digest cellulose. Cellulose is a relatively stiff material, and in plants it is used as a structural molecule to add support to the leaves, stem, and other plant parts. Despite the fact that it cannot be used as an energy source in most animals, cellulose fiber is essential in the diet because it helps exercise the digestive track and keep it clean and healthy
Biochemistry General
What is Biochemistry?
A. Biochemistry is concerned with structural chemistry. It seeks to determine the structures of molecules found in living systems in order to understand structure-function relationships.
B. Biochemistry is concerned with chemical change, this is reflected in the stu dy of metabolic pathways
C. Biochemistry is concerned with information which has accumulated through evolution and is preserved in DNA (or sometimes RNA). These nucleic acid sequences code for amino acid sequences, which result in folded proteins. These proteins are often catalysts (enzymes) and some of them are regulated (able to sense the chemical state inside the cell and, in some cases, the outside)
History of biochemistry:
(Proteins - enzymes)
1828 Wohler --> synthesized a biological compound (urea) from ammonium cyanate (an inorganic chemical)! NH4+ NCO-
1897 the Buchner brothers (Eduard and Hans) demonstrated that alcoholic fermentation could occur in a cell-free extract.
1926 J.B. Sumner demonstrated that an enzyme (urease) was a protein and could be crystallized (indicative of fixed molecular structure and purity)
set stage for Perutz and Kendrew's work on X-ray structure of myoglobin and hemoglobin
Nucleic acid polymers (DNA and RNA)
Another series of discoveries surrounding nucleic acids: Miescher; Mendel; Avery, McCarty, and McLeod; Watson and Crick; Hershey and Chase
Distinguishing Characteristics of Living Systems
a. They are complex, that is they are highly organized (cell - nucleus - chromosome - nucleosomes - DNA base pairs - bases). This organization has physical chemical implications.
b. They are capable of self-replication (biochemistry comes from genetics)
c. They can transform energy. Energy is required to create order (G = H -TS)
Implications of Chemistry for Biology
a. There is an underlying simplicity in the molecular organization of cells (similar proteins are found in E. coli and in humans).
b. All living forms have a "common ancestor" (evolution). Biochemists seek a "logical" molecular path upward.
c. Identity (phenotype) of organism is determined by its set of nucleic acids (genotype) and proteins (gene products) and the regulation of their expression (interaction with the environment).
d. There is a molecular economy in living systems; some molecules appear to have an advantage over many others and are used repeatedly (ATP).
Scope and importance of Biochemistry.
Biochemistry refers to the study of the various chemical processes that goes on inside the body of a living organism. A large number of students are opting for this branch of study because of the wide range of job opportunities that this subject presents.
Students can obtain PhD, M.Sc. and even degree certificates in this subject to get a successful career in Biochemistry. The students who have high marks in Plus II level and had Physics, Chemistry and Biology as their optional subjects can go for a degree course in Biochemistry.
A large number of colleges in India offer a B.Sc. degree in Biochemistry. The students who opt for Biochemistry as their main subject can choose subjects like Chemistry, Botany, Zoology and Industrial Microbiology as the subsidiary subjects. Some of the colleges even allow their students to study Biotechnology as the main subject and Biochemistry as the subsidiary subject. The students who have Zoology or Botany as their main subject can also select Biochemistry as their subsidiary subject for a course of B.Sc. degree.
The students can also go for a course in Biochemistry for their M.Sc., M.Phil or Ph.D. degree. The students who score high marks in their B.Sc. degree course in Biochemistry, Zoology, Botany, Biotechnology, etc. can opt for a M.Sc. in Biochemistry and only the students who score greater than 55% in their M.Sc. course can go for an M.Phil or Ph.D. programs that are offered at a limited number of colleges.
There are vast employment opportunities for the students of Biochemistry as they can be absorbed in a number of Research Institutions. They can also work as faculty in the colleges that offer a course in Biochemistry. The students of Biochemistry can also work as Scientists, research officers, research associates, chemical examiners, etc.Scope and importance of Biochemistry.
Bio chemistry
Overview and Brief History
Overview and Brief History of biotechnology
Biotechnology seems to be leading a sudden new biological revolution. It has brought us to the brink of a world of "engineered" products that are based in the natural world rather than on chemical and industrial processes.
Biotechnology has been described as "Janus-faced." This implies that there are two sides. On one, techniques allow DNA to be manipulated to move genes from one organism to another. On the other, it involves relatively new technologies whose consequences are untested and should be met with caution. The term "biotechnology" was coined in 1919 by Karl Ereky, an Hungarian engineer. At that time, the term meant all the lines of work by which products are produced from raw materials with the aid of living organisms. Ereky envisioned a biochemical age similar to the stone and iron ages.
A common misconception among teachers is the thought that biotechnology includes only DNA and genetic engineering. To keep students abreast of current knowledge, teachers sometimes have emphasized the techniques of DNA science as the "end-and-all" of biotechnology. This trend has also led to a misunderstanding in the general population. Biotechnology is NOT new. Man has been manipulating living things to solve problems and improve his way of life for millennia. Early agriculture concentrated on producing food. Plants and animals were selectively bred, and microorganisms were used to make food items such as beverages, cheese, and bread.
The late eighteenth century and the beginning of the nineteenth century saw the advent of vaccinations, crop rotation involving leguminous crops, and animal drawn machinery. The end of the nineteenth century was a milestone of biology. Microorganisms were discovered, Mendel's work on genetics was accomplished, and institutes for investigating fermentation and other microbial processes were established by Koch, Pasteur, and Lister.
Biotechnology at the beginning of the twentieth century began to bring industry and agriculture together. During World War I, fermentation processes were developed that produced acetone from starch and paint solvents for the rapidly growing automobile industry. Work in the 1930s was geared toward using surplus agricultural products to supply industry instead of imports or petrochemicals. The advent of World War II brought the manufacture of penicillin. The biotechnical focus moved to pharmaceuticals. The "cold war" years were dominated by work with microorganisms in preparation for biological warfare, as well as antibiotics and fermentation processes.
Biotechnology is currently being used in many areas including agriculture, bioremediation, food processing, and energy production. DNA fingerprinting is becoming a common practice in forensics. Similar techniques were used recently to identify the bones of the last Czar of Russia and several members of his family. Production of insulin and other medicines is accomplished through cloning of vectors that now carry the chosen gene. Immunoassays are used not only in medicine for drug level and pregnancy testing, but also by farmers to aid in detection of unsafe levels of pesticides, herbicides, and toxins on crops and in animal products. These assays also provide rapid field tests for industrial chemicals in ground water, sediment, and soil. In agriculture, genetic engineering is being used to produce plants that are resistant to insects, weeds, and plant diseases.
A current agricultural controversy involves the tomato. A recent article in the New Yorker magazine compared the discovery of the edible tomato that came about by early biotechnology with the new "Flavr-Savr" tomato brought about through modern techniques. In the very near future, you will be given the opportunity to bite into the Flavr-Savr tomato, the first food created by the use of recombinant DNA technology ever to go on sale.
What will you think as you raise the tomato to your mouth? Will you hesitate? This moment may be for you as it was for Robert Gibbon Johnson in 1820 on the steps of the courthouse in Salem, New Jersey. Prior to this moment, the tomato was widely believed to be poisonous. As a large crowd watched, Johnson consumed two tomatoes and changed forever the human-tomato relationship. Since that time, man has sought to produce the supermarket tomato with that "backyard flavor." Americans also want that tomato available year-round.
New biotechnological techniques have permitted scientists to manipulate desired traits. Prior to the advancement of the methods of recombinant DNA, scientists were limited to the techniques of their time - cross-pollination, selective breeding, pesticides, and herbicides. Today's biotechnology has its "roots" in chemistry, physics, and biology . The explosion in techniques has resulted in three major branches of biotechnology: genetic engineering, diagnostic techniques, and cell/tissue techniques.
Where Did Biotechnology Begin?
Bio technology begins....
With the Basics
Certain practices that we would now classify as applications of biotechnology have been in use since man's earliest days. Nearly 10,000 years ago, our ancestors were producing wine, beer, and bread by using fermentation, a natural process in which the biological activity of one-celled organisms plays a critical role.In fermentation, microorganisms such as bacteria, yeasts, and molds are mixed with ingredients that provide them with food. As they digest this food, the organisms produce two critical by-products, carbon dioxide gas and alcohol.
In beer making, yeast cells break down starch and sugar (present in cereal grains) to form alcohol; the froth, or head, of the beer results from the carbon dioxide gas that the cells produce. In simple terms, the living cells rearrange chemical elements to form new products that they need to live and reproduce. By happy coincidence, in the process of doing so they help make a popular beverage.
Bread baking is also dependent on the action of yeast cells. The bread dough contains nutrients that these cells digest for their own sustenance. The digestion process generates alcohol (which contributes to that wonderful aroma of baking bread) and carbon dioxide gas (which makes the dough rise and forms the honeycomb texture of the baked loaf).
Discovery of the fermentation process allowed early peoples to produce foods by allowing live organisms to act on other ingredients. But our ancestors also found that, by manipulating the conditions under which the fermentation took place, they could improve both the quality and the yield of the ingredients themselves.
Crop Improvement
Although plant science is a relatively modern discipline, its fundamental techniques have been applied throughout human history. When early man went through the crucial transition from nomadic hunter to settled farmer, cultivated crops became vital for survival. These primitive farmers, although ignorant of the natural principles at work, found that they could increase the yield and improve the taste of crops by selecting seeds from particularly desirable plants.
Farmers long ago noted that they could improve each succeeding year's harvest by using seed from only the best plants of the current crop. Plants that, for example, gave the highest yield, stayed the healthiest during periods of drought or disease, or were easiest to harvest tended to produce future generations with these same characteristics. Through several years of careful seed selection, farmers could maintain and strengthen such desirable traits.
The possibilities for improving plants expanded as a result of Gregor Mendel's investigations in the mid-1860s of hereditary traits in peas. Once the genetic basis of heredity was understood, the benefits of cross-breeding, or hybridization, became apparent: plants with different desirable traits could be used to cultivate a later generation that combined these characteristics.
An understanding of the scientific principles behind fermentation and crop improvement practices has come only in the last hundred years. But the early, crude techniques, even without the benefit of sophisticated laboratories and automated equipment, were a true practice of biotechnology guiding natural processes to improve man's physical and economic well-being.
Harnessing Microbes for Health
Every student of chemistry knows the shape of a Buchner funnel, but they may be unaware that the distinguished German scientist it was named after made the vital discovery (in 1897) that enzymes extracted from yeast are effective in converting sugar into alcohol. Major outbreaks of disease in overcrowded industrial cities led eventually to the introduction, in the early years of the present century, of large-scale sewage purification systems based on microbial activity. By this time it had proved possible to generate certain key industrial chemicals (glycerol, acetone, and butanol) using bacteria.
Another major beneficial legacy of early 20th century biotechnology was the discovery by Alexander Fleming (in 1928) of penicillin, an antibiotic derived from the mold Penicillium. Large-scale production of penicillin was achieved in the 1940s. However, the revolution in understanding the chemical basis of cell function that stemmed from the post-war emergence of molecular biology was still to come. It was this exciting phase of bioscience that led to the recent explosive development of biotechnology.
What is Biotechnology?
Biotechnology in one form or another has flourished since prehistoric times. When the first human beings realized that they could plant their own crops and breed their own animals, they learned to use biotechnology. The discovery that fruit juices fermented into wine, or that milk could be converted into cheese or yogurt, or that beer could be made by fermenting solutions of malt and hops began the study of biotechnology. When the first bakers found that they could make a soft, spongy bread rather than a firm, thin cracker, they were acting as fledgling biotechnologists. The first animal breeders, realizing that different physical traits could be either magnified or lost by mating appropriate pairs of animals, engaged in the manipulations of biotechnology. What then is biotechnology? The term brings to mind many different things. Some think of developing new types of animals. Others dream of almost unlimited sources of human therapeutic drugs. Still others envision the possibility of growing crops that are more nutritious and naturally pest-resistant to feed a rapidly growing world population. This question elicits almost as many first-thought responses as there are people to whom the question can be posed. In its purest form, the term "biotechnology" refers to the use of living organisms or their products to modify human health and the human environment. Prehistoric biotechnologists did this as they used yeast cells to raise bread dough and to ferment alcoholic beverages, and bacterial cells to make cheeses and yogurts and as they bred their strong, productive animals to make even stronger and more productive offspring. Throughout human history, we have learned a great deal about the different organisms that our ancestors used so effectively. The marked increase in our understanding of these organisms and their cell products gains us the ability to control the many functions of various cells and organisms. Using the techniques of gene splicing and recombinant DNA technology, we can now actually combine the genetic elements of two or more living cells. Functioning lengths of DNA can be taken from one organism and placed into the cells of another organism. As a result, for example, we can cause bacterial cells to produce human molecules. Cows can produce more milk for the same amount of feed. And we can synthesize therapeutic molecules that have never before existed. |
Jobs in India : Yuchra Biologicals jobs, Jobs in all cities, India
« Previous 1 - 10 out of 10 Next » | ||||||||||||||||||||
|